Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
BMJ Open ; 14(4): e081835, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643010

ABSTRACT

INTRODUCTION: Rare diseases (RDs) collectively impact over 30 million people in Europe. Most individual conditions have a low prevalence which has resulted in a lack of research and expertise in this field, especially regarding genetic newborn screening (gNBS). There is increasing recognition of the importance of incorporating patients' needs and general public perspectives into the shared decision-making process regarding gNBS. This study is part of the Innovative Medicine Initiative project Screen4Care which aims at shortening the diagnostic journey for RDs by accelerating diagnosis for patients living with RDs through gNBS and the use of digital technologies, such as artificial intelligence and machine learning. Our objective will be to assess expecting parent's perspectives, attitudes and preferences regarding gNBS for RDs in Italy and Germany. METHODS AND ANALYSIS: A mixed method approach will assess perspectives, attitudes and preferences of (1) expecting parents seeking genetic consultation and (2) 'healthy' expecting parents from the general population in two countries (Germany and Italy). Focus groups and interviews using the nominal group technique and ranking exercises will be performed (qualitative phase). The results will inform the treatment of attributes to be assessed via a survey and a discrete choice experiment (DCE). The total recruitment sample will be 2084 participants (approximatively 1000 participants in each country for the online survey). A combination of thematic qualitative and logit-based quantitative approaches will be used to analyse the results of the study. ETHICS AND DISSEMINATION: This study has been approved by the Erlangen University Ethics Committee (22-246_1-B), the Freiburg University Ethics Committee (23-1005 S1-AV) and clinical centres in Italy (University of FerraraCE: 357/2023/Oss/AOUFe and Hospedale Bambino Gesu: No.2997 of 2 November 2023, Prot. No. _902) and approved for data storage and handling at the Uppsala University (2022-05806-01). The dissemination of the results will be ensured via scientific journal publication (open access).


Subject(s)
Neonatal Screening , Patient Preference , Infant, Newborn , Humans , Artificial Intelligence , Rare Diseases/diagnosis , Rare Diseases/genetics , Focus Groups
2.
Sci Rep ; 13(1): 15942, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37743371

ABSTRACT

To gain insight on dystrophin (DMD) gene transcription dynamics and spatial localization, we assayed the DMD mRNA amount and defined its compartmentalization in myoblasts, myotubes, and skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients. Using droplet digital PCR, Real-time PCR, and RNAscope in situ hybridization, we showed that the DMD transcript amount is extremely reduced in both DMD patients' cells and muscle biopsies and that mutation-related differences occur. We also found that, compared to controls, DMD transcript is dramatically reduced in the cytoplasm, as up to 90% of it is localized in nuclei, preferentially at the perinuclear region. Using RNA/protein colocalization experiments, we showed that about 40% of nuclear DMD mRNA is localized in the nucleoli in both control and DMD myogenic cells. Our results clearly show that mutant DMD mRNA quantity is strongly reduced in the patients' myogenic cells and muscle biopsies. Furthermore, mutant DMD mRNA compartmentalization is spatially unbalanced due to a shift in its localization towards the nuclei. This abnormal transcript repartition contributes to the poor abundance and availability of the dystrophin messenger in cytoplasm. This novel finding also has important repercussions for RNA-targeted therapies.


Subject(s)
Dystrophin , Muscle, Skeletal , Humans , RNA, Messenger/genetics , Dystrophin/genetics , Cytoplasm , RNA , Biopsy , In Situ Hybridization
3.
J Neuromuscul Dis ; 10(6): 987-1002, 2023.
Article in English | MEDLINE | ID: mdl-37545256

ABSTRACT

 Duchenne muscular dystrophy is a severe, X-linked disease characterized by decreased muscle mass and function in children. Genetic and biochemical research over the years has led to the characterization of the cause and the pathophysiology of the disease. Moreover, the elucidation of genetic mechanisms underlining Duchenne muscular dystrophy has allowed for the design of innovative personalized therapies.The identification of specific, accurate, and sensitive biomarkers is becoming crucial for evaluating muscle disease progression and response to therapies, disease monitoring, and the acceleration of drug development and related regulatory processes.This review illustrated the up-to-date progress in the development of candidate biomarkers in DMD at the level of proteins, metabolites, micro-RNAs (miRNAs) and genetic modifiers also highlighting the complexity of translating research results to clinical practice.We highlighted the challenges encountered in translating biomarkers into the clinical context and the existing bottlenecks hampering the adoption of biomarkers as surrogate endpoints. These challenges could be overcome by national and international collaborative efforts, multicenter data sharing, definition of public biobanks and patients' registries, and creation of large cohorts of patients. Novel statistical tools/ models suitable to analyze small patient numbers are also required.Finally, collaborations with pharmaceutical companies would greatly benefit biomarker discovery and their translation in clinical trials.


Subject(s)
Biomedical Research , MicroRNAs , Muscular Dystrophy, Duchenne , Child , Humans , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , MicroRNAs/metabolism , MicroRNAs/therapeutic use , Muscle, Skeletal , Biomarkers/metabolism , Multicenter Studies as Topic
4.
Orphanet J Rare Dis ; 18(1): 196, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37480080

ABSTRACT

BACKGROUND: The development of e-health technologies for teleconsultation and exchange of knowledge is one of the core purposes of European Reference Networks (ERNs), including the ERN EURO-NMD for rare neuromuscular diseases. Within ERNs, the Clinical Patient Management System (CPMS) is a web-based platform that seeks to boost active collaboration within and across the network, implementing data sharing. Through CPMS, it is possible to both discuss patient cases and to make patients' data available for registries and databases in a secure way. In this view, CPMS may be considered a sort of a temporary storage for patients' data and an effective tool for data sharing; it facilitates specialists' consultation since rare diseases (RDs) require multidisciplinary skills, specific, and outstanding clinical experience. Following European Union (EU) recommendation, and to promote the use of CPMS platform among EURO-NMD members, a twelve-month pilot project was set up to train the 15 Italian Health Care Providers (HCPs). In this paper, we report the structure, methods, and results of the teaching course, showing that tailored, ERN-oriented, training can significantly enhance the profitable use of the CPMS. RESULTS: Throughout the training course, 45 professionals learned how to use the many features of the CPMS, eventually opening 98 panels of discussion-amounting to 82% of the total panels included in the EURO-NMD. Since clinical, genetic, diagnostic, and therapeutic data of patients can be securely stored within the platform, we also highlight the importance of this platform as an effective tool to discuss and share clinical cases, in order to ease both case solving and data storing. CONCLUSIONS: In this paper, we discuss how similar course could help implementing the use of the platform, highlighting strengths and weaknesses of e-health for ERNs. The expected result is the creation of a "map" of neuromuscular patients across Europe that might be improved by a wider use of CPMS.


Subject(s)
Information Dissemination , Rare Diseases , Humans , Pilot Projects , Europe , European Union
5.
Eur J Med Genet ; 66(6): 104749, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948289

ABSTRACT

Telemedicine provides healthcare services remotely and represents a fundamental resource for the management of rare and fragile patients. Tele-health implementation is a main objective of the European Reference Networks (ERNs) mission to accelerate diagnosis for rare diseases. TeleNewCARe is a pilot case-control project which evaluates the efficacy and satisfaction of telegenetics for neuromuscular and cardiac adult patients, compared to face-to-face genetic counselling. The virtual sessions were co-hosted by a medical geneticist and a neurologist/cardiologist. Specific questionnaires (Clinical Genetics Satisfaction Questionnaire (CGS), Telemedicine Satisfaction Questionnaire (TSQ) and a Satisfaction Questionnaire for medical geneticists) were used to assess the effectiveness and fulfilment of telecounselling, both for patients and health care providers. Satisfaction expressed for telegenetics did not significantly differ from face-to-face counselling. The virtually enrolled patients declared they had the possibility to relate confidentially with the specialists, to share information and to be informed in an exhaustive way about their disease. Almost all patients declared themselves willing to reuse the telecounselling in the future. The multidisciplinary care was perceived as a significant added value. No overt technical problems were reported although the need for digital skills and tools can limit patients' compliance. Our experience supports telegenetics as a valid alternative to traditional genetic counselling in cardiac and neuromuscular patients. This innovative approach facilitates multidisciplinary care, grants a periodical follow up, without forcing patients to discomfortable travelling, and allows to maintain expert care. This result meets the ERNs needs to reduce patients' burden to access and monitor their healthcare.


Subject(s)
Heart Diseases , Telemedicine , Adult , Humans , Genetic Counseling , Patients , Heart Diseases/genetics , Heart Diseases/therapy , Case-Control Studies
6.
Cerebellum ; 22(6): 1313-1319, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36447112

ABSTRACT

AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Degenerations , Humans , ATPases Associated with Diverse Cellular Activities/genetics , Spinocerebellar Degenerations/genetics , Cerebellar Ataxia/genetics , Mutation/genetics , Italy , ATP-Dependent Proteases/genetics
7.
Front Neurol ; 14: 1288721, 2023.
Article in English | MEDLINE | ID: mdl-38288333

ABSTRACT

DMD gene pathogenic variations cause a spectrum of phenotypes, ranging from severe Duchenne muscular dystrophy, the Becker milder cases, the intermediate or very mild muscle phenotypes invariably characterized by high CK, and the ultrarare fully-asymptomatic cases. Besides these phenotypes, X-linked dilated cardiomyopathy is also caused by DMD mutations. Males carrying DMD deletions with absent or very mild phenotypes have been sparsely described. We performed a horizon scan on public datasets to enroll males with the above phenotypes and carrying DMD deletions to delineate myopathic genotype-phenotype relationships. We inventoried 81 males, who were divided into the following clinical categorization: fully-asymptomatic males aged >43 years (A, N = 22); isolated hyperCKemia (CK, N = 35); and mild weakness (any age) with or without high CK (WCK, N = 24). In all cases, deleted intervals were exons 2 to 55, and no downstream exons were ever involved, apart from an exon 78 deletion in a WCK patient. All deletions were in-frame apart from the known exception to the rule of exon 2 and exon 78. We correlated the mild phenotypes (A and CK) to deleted exons, intronic breakpoints, exon-exon junctions, 3' isoforms rule, and protein epitopes, and we found that some genetic profiles are exclusively/mainly occurring in A/CK phenotypes, suggesting they are compatible with a quasi-normal muscular performance. We discussed diverse pathogenic mechanisms that may contribute to mild dystrophinopathic phenotypes, and we tried to address some "critical" genetic configurations or exon content needed to preserve a semi-functional DMD gene.

8.
Am J Med Genet A ; 188(7): 2036-2047, 2022 07.
Article in English | MEDLINE | ID: mdl-35445792

ABSTRACT

Unique or multiple congenital facial skin polyps are features of several rare syndromes, from the most well-known Pai syndrome (PS), to the less recognized oculoauriculofrontonasal syndrome (OAFNS), encephalocraniocutaneous lipomatosis (ECCL), or Sakoda complex (SC). We set up a research project aiming to identify the molecular bases of PS. We reviewed 27 individuals presenting with a syndromic frontonasal polyp and initially referred for PS. Based on strict clinical classification criteria, we could confirm only nine (33%) typical and two (7%) atypical PS individuals. The remaining ones were either OAFNS (11/27-41%) or presenting with an overlapping syndrome (5/27-19%). Because of the phenotypic overlap between these entities, OAFNS, ECCL, and SC can be either considered as differential diagnosis of PS or part of the same spectrum. Exome and/or genome sequencing from blood DNA in 12 patients and from affected tissue in one patient failed to identify any replication in candidate genes. Taken together, our data suggest that conventional approaches routinely utilized for the identification of molecular etiologies responsible for Mendelian disorders are inconclusive. Future studies on affected tissues and multiomics studies will thus be required in order to address either the contribution of mosaic or noncoding variation in these diseases.


Subject(s)
Eye Abnormalities , Lipomatosis , Neurocutaneous Syndromes , Agenesis of Corpus Callosum , Cleft Lip , Coloboma , Craniofacial Abnormalities , Diagnosis, Differential , Ear, External/abnormalities , Eye Abnormalities/genetics , Eye Diseases , Face/abnormalities , Humans , Lipoma , Lipomatosis/genetics , Nasal Polyps , Neurocutaneous Syndromes/genetics , Respiratory System Abnormalities , Skin Diseases , Spine/abnormalities
9.
Neuromuscul Disord ; 31(10): 1013-1020, 2021 10.
Article in English | MEDLINE | ID: mdl-34736624

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe X-linked disease characterized by progressive muscle weakness. It is caused by a variety of DMD gene pathogenic variations (large deletions or duplications, and small mutations) which leads to the absence or to a decreased amount of dystrophin protein. The allelic Becker muscular dystrophy is characterized by later onset and milder muscle involvement, and other rarer phenotypes might also be associated, such as dilated cardiomyopathy, cognitive impairment, and other neurological signs. Following the identification of the genetic cause and the disease pathophysiology, innovative personalized therapies emerged. These can be categorized into two main groups: (1) therapies aiming at the restoration of dystrophin at the sarcolemma; (2) therapeutics dealing with secondary consequences of dystrophin deficiency. In this review we provide an overview about DMD genotype-phenotype correlation, and on main approaches to restore dystrophin as stop codon read-through, exon skipping, vector-mediated gene therapy, and genome-editing strategies, some of these are based on approved orphan drugs. Finally, we present the clinical potential of novel strategies combining therapies to correct the genetic defect and other approaches, targeting secondary downstream pathological cascade due to dystrophin deficiency.


Subject(s)
Dystrophin/metabolism , Muscular Dystrophy, Duchenne/therapy , Exons , Genetic Therapy , Humans , Mutation , Phenotype , Sarcolemma/metabolism
10.
J Clin Med ; 10(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671409

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common childhood muscular dystrophy affecting ~1:5000 live male births. Following the identification of pathogenic variations in the dystrophin gene in 1986, the underlining genotype/phenotype correlations emerged and the role of the dystrophin protein was elucidated in skeletal, smooth, and cardiac muscles, as well as in the brain. When the dystrophin protein is absent or quantitatively or qualitatively modified, the muscle cannot sustain the stress of repeated contractions. Dystrophin acts as a bridging and anchoring protein between the sarcomere and the sarcolemma, and its absence or reduction leads to severe muscle damage that eventually cannot be repaired, with its ultimate substitution by connective tissue and fat. The advances of an understanding of the molecular pathways affected in DMD have led to the development of many therapeutic strategies that tackle different aspects of disease etiopathogenesis, which have recently led to the first successful approved orphan drugs for this condition. The therapeutic advances in this field have progressed exponentially, with second-generation drugs now entering in clinical trials as gene therapy, potentially providing a further effective approach to the condition.

11.
Neurol Genet ; 7(1): e536, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33376799

ABSTRACT

OBJECTIVE: Genetic diagnosis and mutation identification are now compulsory for Duchenne (DMD) and Becker muscular dystrophies (BMD), which are due to dystrophin (DMD) gene mutations, either for disease prevention or personalized therapies. To evaluate the ethnic-related genetic assortments of DMD mutations, which may impact on DMD genetic diagnosis pipelines, we studied 328 patients with DMD and BMD from non-European countries. METHODS: We performed a full DMD mutation detection in 328 patients from 10 Eastern European countries (Poland, Hungary, Lithuania, Romania, Serbia, Croatia, Bosnia, Bulgaria, Ukraine, and Russia) and 2 non-European countries (Cyprus and Algeria). We used both conventional methods (multiplex ligation-dependent probe amplification [MLPA] followed by gene-specific sequencing) and whole-exome sequencing (WES) as a pivotal study ran in 28 patients where DMD mutations were already identified by standard techniques. WES output was also interrogated for DMD gene modifiers. RESULTS: We identified DMD gene mutations in 222 male patients. We identified a remarkable allele heterogeneity among different populations with a mutation landscape often country specific. We also showed that WES is effective for picking up all DMD deletions and small mutations and its adoption could allow a detection rate close to 90% of all occurring mutations. Gene modifiers haplotypes were identified with some ethnic-specific configurations. CONCLUSIONS: Our data provide unreported mutation landscapes in different countries, suggesting that ethnicity may orient genetic diagnosis flowchart, which can be adjusted depending on the mutation type frequency, with impact in drug eligibility.

12.
Front Genet ; 11: 605, 2020.
Article in English | MEDLINE | ID: mdl-32719714

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment. METHODS AND FINDINGS: We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years. DMD patients were defined as high responders (HR) if they had maintained the ability to walk after 15 years of age and low responders (LR) for those who had lost ambulation before the age of 10 despite corticosteroid therapy. Based on interactome mapping, we prioritized 205 genes and sequenced them in 21 DMD patients (discovery cohort or DiC = 21). We identified 43 SNPs that discriminate between HR and LR. Discriminant Analysis of Principal Components (DAPC) prioritized 2 response-associated SNPs in the TNFRSF10A gene. Validation of this genotype was done in two additional larger cohorts composed of 46 DMD patients on corticosteroid therapy (validation cohorts or VaC1), and 150 non ambulant DMD patients and never treated with corticosteroids (VaC2). SNP analysis in all validation cohorts (N = 207) showed that the CT haplotype is significantly associated with HR DMDs confirming the discovery results. CONCLUSION: We have shown that TNFRSF10A CT haplotype correlates with corticosteroid response in DMD patients and propose it as an exploratory CS response biomarker.

13.
Front Genet ; 11: 131, 2020.
Article in English | MEDLINE | ID: mdl-32194622

ABSTRACT

Dystrophinopathies are inherited diseases caused by mutations in the dystrophin (DMD) gene for which testing is mandatory for genetic diagnosis, reproductive choices and eligibility for personalized trials. We genotyped the DMD gene in our Italian cohort of 1902 patients (BMD n = 740, 39%; DMD n =1162, 61%) within a nationwide study involving 11 diagnostic centers in a 10-year window (2008-2017). In DMD patients, we found deletions in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein domain, with effects on population genetic characteristics and new personalized therapies.

14.
Clin Neurol Neurosurg ; 186: 105536, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31574358

ABSTRACT

Emery Dreifuss muscular dystrophy (EDMD) is an inherited myopathy characterized by early contractures, slow progressive muscle weakness and cardiac involvement. To date at least seven genes have been associated to EDMD with different inheritance patterns, being emerin gene responsible for the X-linked form of the disease. We report a 40-year-old man who was referred for severe gait difficulty. At age 6 years the patient presented with a waddling gate, lumbar lordosis and heel contractures. Both electrophysiology and muscle biopsy were consistent with a neurogenic disorder and he received a diagnosis of spinal muscular atrophy type 3. At the age of 30 the patient developed heart involvement with junctional escape rhythm and, eight years later, had a spontaneous chordae tendinae rupture. A new clinical examination showed severe muscular weakness and atrophy in scapulohumeroperoneal pattern with significant involvement of the lower facial and intrinsic hand muscles and on a second muscle biopsy emerin was absent by immunohistochemistry and by immunoblot analysis. Sequence analysis of EMD gene revealed the presence of a novel mutation represented by an out-of-frame deletion spanning from the beginning of exon 1 to the half of intron 2 (p.Asp6Glyfs*27). Our study expands the clinical and molecular spectrum of X-linked EDMD.


Subject(s)
Chordae Tendineae/injuries , Membrane Proteins/genetics , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation/genetics , Nuclear Proteins/genetics , Rupture, Spontaneous/genetics , Adult , Chordae Tendineae/diagnostic imaging , Electrocardiography/methods , Humans , Male , Muscular Dystrophy, Emery-Dreifuss/complications , Muscular Dystrophy, Emery-Dreifuss/diagnostic imaging , Pedigree , Rupture, Spontaneous/complications , Rupture, Spontaneous/diagnostic imaging
15.
Neuromuscul Disord ; 29(10): 776-785, 2019 10.
Article in English | MEDLINE | ID: mdl-31558336

ABSTRACT

We describe a novel ATP7A gene mutation associated with distal motor neuropathy, mild connective tissue abnormalities and autonomic disturbances. Next-generation sequencing analysis of a lower-motor neuron diseases gene panel was performed in two sibs presenting with distal motor neuropathy plus an autonomic dysfunction, which main manifestations were retrograde ejaculation, diarrhea and hyperhydrosis. Probands underwent dysmorphological, neurological, electrophysiological as well as biochemical evaluations and somatic and autonomic innervation studies on skin biopsies. A novel missense mutation (p.A991D) was identified in the X-linked ATP7A gene, segregating in both brothers and inherited from their healthy mother. Biochemical studies on patients' blood samples showed reduced serum copper and ceruloplasmin levels. Clinical and neurophysiological evaluation documented dysautonomic signs. Quantitative evaluation of skin innervation disclosed a small fiber neuropathy with prevalent autonomic involvement. Mutations in the ATP7A gene, encoding for a copper-transporting ATPase, have been associated with the severe infantile neurodegenerative Menkes disease and in its milder variant, the Occipital Horn Syndrome. Only two ATP7A mutations were previously reported as causing, a pure axonal distal motor neuropathy (dHMN-SMAX3). The phenotype we report represents a further example of this rare genotype-phenotype correlation and highlights the possible occurrence in SMAX3 of autonomic disturbances, as described for Menkes disease and Occipital Horn Syndrome.


Subject(s)
Copper-Transporting ATPases/genetics , Motor Neuron Disease/genetics , Muscular Atrophy, Spinal/genetics , Mutation/genetics , Adenosine Triphosphatases/metabolism , Aged , Cutis Laxa/genetics , Cutis Laxa/pathology , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/pathology , Genetic Association Studies/methods , Humans , Male , Menkes Kinky Hair Syndrome/diagnosis , Menkes Kinky Hair Syndrome/genetics , Middle Aged , Motor Neuron Disease/diagnosis , Muscular Atrophy, Spinal/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...